### **Statistics Worksheet**

### Class Level: 11

### **MoNE Objective**

TD.11.5.1.Gerçek hayat durumlarıyla ilgili bir istatistik problemini çözmek için verileri toplar, düzenler, temsil eder ve yorumlar.

# Time: 10 minutes

### Reflection

In this worksheet, I put emphasis on finding the line of best fit function with an experiment via TI-84 calculator. Since I was inspired by a YouTube video while I was creating this worksheet, I was impressed that the student could find the approximate line of best fit function and did his calculations according to this function. In this worksheet, I also want students to make estimations to find the line of best fit functions by trying with their TI-84 calculator, but differently I want them to find the line of best fit via TI-84 and compare it with their estimations. Then I want students to do their calculations using the exact line of best fit function. Although this activity may seem to be too easy for 11<sup>th</sup> grades, I chose this activity to be done in a limited time which is 10 minutes. It would be a good activity for students to make estimations via experiments and understand how to make a prediction through finding the line of best fit.

## Process

Suppose that you went on a long trip from Mersin to Istanbul with your family. During the journey, you never stopped. Looking at the distance you had travelled every hour, you collected the data below.

| Hour     | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Distance | 100 | 203 | 299 | 393 | 496 | 585 | 689 | 786 | 888 | 991 |
|          | km  |

**1.** Which function do you think gives the approximate distance related to the hours you had travelled?

- Enter the data into your TI 84 calculator: Press [STAT], highlight (EDIT) and press [1]. Enter the hour numbers into (L1) list by pressing enter after entering each number.
- Move the cursor right and enter the distances into (L2) list.
- Press [GRAPH] and then press [ZOOM][9].
- The steps you should follow are shown below.



- **2.** Does the function you estimated first, go through the points?
  - Press [Y=] and enter the function that you think approximately fits with the data.

• Press [GRAPH] and see if the graph of the function goes through the points.

**3.** Try to make a better estimate of the function by entering the function into [Y2], [Y3], and so on.

4. Find the line of best fit and see if your estimation is close to the line of best fit.

- Press [STAT], move the cursor right and highlight (CALC), press [4](LinReg).
- Enter (L1) for XList and (L2) for YList
- FreqList should be empty
- For (Store RegEQ), press [VARS], move the cursor right and highlight (Y-VARS) and press [1](Function), and press [1] (Y1). If there is already a function for (Y1), choose another function, so that you could compare the line of best fit and tour other functions.
- Highlight (Calculate) and press [ENTER]
- Press [GRAPH]
- The steps you should follow are shown below.

| EDIT <b>Mille</b> TESTS<br>1:1-Var Stats<br>2:2-Var Stats<br>3:Med-Med<br>9 <b>H</b> LinRe9(ax+b)<br>5:QuadRe9<br>6:CubicRe9<br>74QuartRe9 | CinResConx+20<br>Xlist:L1<br>Ylist:L2<br>FreqList:<br>Store Re9EQ:∎<br>Calculate      | VARS <b>WEWARE</b><br>UEFunction…<br>2:Parametric…<br>3:Polar…<br>4:On/Off…          |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| <b>HUNDED CON</b><br>1                                                                                                                     | <b>Unixeloxed</b><br>Xlist:L1<br>Ylist:L2<br>FreqList:<br>Store Re9EQ:Y1<br>Calculate | Unixe<br>9=ax+b<br>a=98.33939394<br>b=2.133333333<br>b=2.9998439794<br>r=.9999219866 |



• If you tried other functions, you may see the graph as;



**5.** If your destination is 1000 km from your starting point, calculate the exact time that you reach your destination?